LiDAR 系统的工作原理及解决方案,本质上讲,LiDAR 是一个测量目标物体距离的装置。通过发射一个短的激光脉冲,并记录发射光脉冲与探测到的反射(反向散射)光脉冲的时间间隔,就可以推算出距离信息。系统的工作原理及解决方案,LiDAR系统可以使用扫描反射镜,多束激光或其它的方式“扫描”物体空间。借助其精确的测距能力,LiDAR 能够用于解决许多不同的问题。在遥感应用中,LiDAR系统用于测量散射,吸收,或大气中的颗粒或原子的再发射。在这些应用中,对激光束的波长可能会有专门的要求。可以用来测量特定分子种类在大气中的浓度,例如甲烷和气溶胶含量。而测量大气中的雨滴则可以用来估计风暴距离和降水概率。激光雷达通过发射激光束,精确测量目标距离,是自动驾驶的关键传感器。上海四探头激光雷达厂商
关于实际量程:雷达对特定目标的实际量程会受到如下因素的影响:1、目标漫反射率,目标漫反射率不但与材质有关,也与表面朝向有关。目标漫反射率越高,实际量程就越远;2、反射面积,目标表面被激光光斑覆盖的面积。覆盖面积越大,实际测量距离越远;3、透光罩脏污程度,雷达的透光罩脏污会造成透光性能下降,透光性能下降得越多,测量能力越差,透光率下降至 60%时,测量能力可能完全失效;4、大气条件,雷达的实际测量能力同时受到大气条件的影响,特别是在户外工作时。大气的光传播能力越差,雷达的实际测量能力越低。在极端天气条件 (例如浓雾)下,测量能力会完全失效。上海四探头激光雷达厂商激光雷达的设计优化提高了其在复杂环境中的可靠性。
我们可以根据 LiDAR 能描绘出稀疏的三维世界的特点,而扫描得到的障碍物点云通常又比背景更密集,通过分类聚类的方法可以利用其进行感知障碍物。而随着深度学习带来的检测和分割技术上的突破,LiDAR 已经能做到高效的检测行人和车辆,输出检测框,即 3D bounding box,或者对点云中的每一个点输出 label,更有甚者在尝试使用 LiDAR 检测地面上的车道线。在三维目标识别的对象方面,较初研究主要针对立方体、柱体、锥体以及二次曲面等简单形体构成的三维目标。
关于 FMCW 的原理,可以阅读本系列的下一篇文章:Yvon Shong:走进自动驾驶传感器——毫米波雷达。调幅连续波(AMCW)激光雷达与基本的飞行时间系统相似的是,调幅连续波激光雷达发射一个信号,测量激光反射回来的时间。但区别在于,时间飞行系统只发射一个脉冲,调幅连续波 LiDAR 通过改变激光二极管中的极电流来调整发射光强度,从而实现调制。激光雷达应用于测绘主要有测距、定位以及地表物体的三维绘制;其达作为一种重要的传感器,目前正在自动驾驶领域和无人飞行器领域得到普遍应用。激光雷达在建筑施工中用于精确测量和定位。
测距准度:激光雷达探测得到距离数据与真值之间的差距,准度越高表示测量结果与真实数据符合程度越高。点频:激光雷达每秒完成探测并获取的探测点的数目。抗干扰:激光雷达对工作同一环境下、采用相同激光波段的其他激光雷达的干扰信号的抵抗能力,抗干扰能力越强说明在多台激光雷达共同工作的条件下产生的噪点率越低功耗:激光雷达系统工作状态下所消耗的电功率。激光雷达线数:一般指激光雷达垂直方向上的测量线的数量,对于一定的角度范围,线数越多表示角度分辨率越高,对目标物的细节分辨能力越强。激光雷达的高稳定性使其在太空探测任务中备受青睐。上海固态激光雷达价格
激光雷达的应用领域还包括机器人导航、安防监控等,可以满足不同行业对于距离测量和目标探测的需求。上海四探头激光雷达厂商
相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往较高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。上海四探头激光雷达厂商
文章来源地址: http://qmjpj.m.chanpin818.com/qcaqfz/dcld/deta_22231506.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。